
graphics3d_E

graphics3d_E ii

COLLABORATORS

TITLE :

graphics3d_E

ACTION NAME DATE SIGNATURE

WRITTEN BY October 9, 2022

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

graphics3d_E iii

Contents

1 graphics3d_E 1

1.1 graphics3d_E.doc . 1

1.2 graphics3d.library/GD_display3d() . 3

1.3 graphics3d.library/GD_close_display3d() . 3

1.4 graphics3d.library/GD_changeviewmode() . 4

1.5 graphics3d.library/GD_changeviewmodeobj() . 5

1.6 graphics3d.library/GD_touchpalette() . 6

1.7 graphics3d.library/GD_moveforward() . 6

1.8 graphics3d.library/GD_viewangle() . 7

1.9 graphics3d.library/GD_frustum() . 8

1.10 graphics3d.library/GD_createlightsource() . 9

1.11 graphics3d.library/GD_ambientlight() . 10

1.12 graphics3d.library/GD_positioncamera() . 10

1.13 graphics3d.library/GD_aspectratio() . 11

1.14 graphics3d.library/GD_clipmode() . 12

1.15 graphics3d.library/GD_pickobj() . 12

1.16 graphics3d.library/GD_newobj() . 14

1.17 graphics3d.library/GD_deleteobject() . 15

1.18 graphics3d.library/GD_addobjvertex() . 15

1.19 graphics3d.library/GD_addobjpoly() . 16

1.20 graphics3d.library/GD_cattpoly() . 17

1.21 graphics3d.library/GD_recalcobj() . 18

1.22 graphics3d.library/GD_setobj() . 19

1.23 graphics3d.library/GD_getobj() . 20

1.24 graphics3d.library/GD_paintframe() . 20

1.25 graphics3d.library/GD_newview() . 21

1.26 graphics3d.library/GD_switch_rp() . 22

1.27 graphics3d.library/GD_translateobject() . 23

1.28 graphics3d.library/GD_positionobject() . 24

1.29 graphics3d.library/GD_scaleobject() . 24

graphics3d_E iv

1.30 graphics3d.library/GD_rotateobject() . 25

1.31 graphics3d.library/GD_clipbox() . 26

1.32 graphics3d.library/GD_over() . 27

1.33 graphics3d.library/GD_cascene() . 28

1.34 graphics3d.library/GD_fix2int() . 29

1.35 graphics3d.library/GD_fix2sfl() . 30

1.36 graphics3d.library/GD_fix2dfl() . 30

1.37 graphics3d.library/GD_int2fix() . 31

1.38 graphics3d.library/GD_sfl2fix() . 31

1.39 graphics3d.library/GD_dfl2fix() . 32

1.40 graphics3d.library/GD_loadobject() . 33

1.41 graphics3d.library/GD_genpalette() . 34

1.42 graphics3d.library/GD_modpoly() . 36

1.43 graphics3d.library/GD_newtmap() . 38

1.44 graphics3d.library/GD_rmtmap() . 38

1.45 graphics3d.library/GD_newtmapf() . 39

1.46 graphics3d.library/GD_colldetect() . 40

1.47 graphics3d.library/GD_modobj() . 41

graphics3d_E 1 / 42

Chapter 1

graphics3d_E

1.1 graphics3d_E.doc

graphics3d.library

GD_addobjpoly()

GD_addobjvertex()

GD_ambientlight()

GD_aspectratio()

GD_cascene()

GD_cattpoly()

GD_changeviewmode()

GD_changeviewmodeobj()

GD_clipbox()

GD_clipmode()

GD_close_display3d()

GD_colldetect()

GD_createlightsource()

GD_deleteobject()

GD_dfl2fix()

GD_display3d()

GD_fix2dfl()

GD_fix2int()

graphics3d_E 2 / 42

GD_fix2sfl()

GD_frustum()

GD_genpalette()

GD_getobj()

GD_int2fix()

GD_loadobject()

GD_modobj()

GD_modpoly()

GD_moveforward()

GD_newobj()

GD_newtmap()

GD_newtmapf()

GD_newview()

GD_over()

GD_paintframe()

GD_pickobj()

GD_positioncamera()

GD_positionobject()

GD_recalcobj()

GD_rmtmap()

GD_rotateobject()

GD_scaleobject()

GD_setobj()

GD_sfl2fix()

GD_switch_rp()

GD_touchpalette()

GD_translateobject()

GD_viewangle()

graphics3d_E 3 / 42

1.2 graphics3d.library/GD_display3d()

NAME
GD_display3d -- To initialize all ambient for the library.

SYNOPSIS
ambient3d=GD_display3d(win, x0, y0, scrw, scrh, vdist)

A0 D0 D1 D2 D3 D4
struct ambient3d *GD_display3d(struct Window*,LONG,LONG,LONG,LONG,LONG);

FUNCTION
create and initialized the ambient3d structure that is the describer ←↩

of the 3d scene and is used us input from all other functions.

INPUTS
win = pointer to Window structure of the window where you want

viewer the 3d scene.
x0,y0 = coordinates of upper left corner of the box that define

the visualizations limits of the scene.
scrw = width of this box it must be a multiply af 16 (max 3000).

It will use also as max X dimension of visualization box.
scrh = height of this box (max. 3000).

It wilL use also as max Y dimension of visualization box.
vdist = distance from observer and proiection plane ,is expressed

as integer.
RESULT

ambient3d = pointer to ambient3d structure created, if it is equal
to 0 than there is an error and the inizalization
is aborted.

BUGS
anyone note, if you find and tell me.

NOTES
This function it must be use BEFORE all the other.
It can be used more than one time on the same program than storing
separately the pointer returned, it possible to work simultaneously
and independently an all the scenes so definited.
In the future perhaps I will make possible generate more scene of
the same 3D space (for example to do more view) but all with the
same memories areas for the objects definition .Now the library ever
reallocate all areas and if the objects are much or complex it use
very more memory.

SEE ALSO

GD_close_display3d

1.3 graphics3d.library/GD_close_display3d()

graphics3d_E 4 / 42

NAME
GD_close_display3d -- erase all over the 3d scene viewing.

SYNOPSIS
GD_close_display3d(in)

A0
void GD_close_display3d(struct ambient3d *);

FUNCTION
erase all that it was open and defined with

GD_display3d
included

all objects of this scene.

INPUTS
in = pointer to a ambient3d structure that you want delete.

If this pointer is 0 than it do nothing.

RESULT

BUGS
anyone note, if you find any tell me.

NOTES
use it tipically at the end of the programm to erase all that is in
relation with this library.

SEE ALSO

GD_display3d

1.4 graphics3d.library/GD_changeviewmode()

NAME
GD_changeviewmode -- change the view mode of all objects

SYNOPSIS
esi=GD_changeviewmode(in, modo, b_col)

A0 D0 D1
LONG GD_changeviewmode(struct ambient3d *,LONG,LONG);

FUNCTION
change simultaneously the view mode of ALL objects defined in the
scene3d, for now is possible only this three view modes :
wire frame, solid shading and flat shading.

INPUTS
in = pointer to ambient3d structure of the 3d scene over there

you want work.
It must be greater than 0 otherwise the result is undefined.

modo = new view mode : see
GD_modobj()
.

graphics3d_E 5 / 42

b_col = color register n# to use for the border of polygon of
objects.
If it is minor than 0 than no border.

RESULT
esi = result , if different than 0 all ok, if equal to 0 than error

operation aborted.
BUGS

anyone note, if you find any tell me.

NOTES

SEE ALSO

GD_changeviewmodeobj

1.5 graphics3d.library/GD_changeviewmodeobj()

OBSOLETE -- use
GD_modobj()
instead

NAME
GD_changeviewmodeobj -- change the view mode of selected object

SYNOPSIS
esi=GD_changeviewmodeobj(in, modo)

A0 D0
LONG GD_changeviewmodeobj(struct ambient3d *,LONG);

FUNCTION
change the view mode of the actually selected object in the 3d scene
considered.

INPUTS
in = pointer to ambient3d structure of the 3d scene over there

you want work.
It must be greater than 0 otherwise the result is undefined.

modo = new view mode :
0 -> wire frame (use macro WIREF)
1 -> flat shading (use macro FLAT)
2 -> solid shading (use macro SOLID)
3 -> goraud shading (use macro GORAUD)

RESULT
esi = result , if different than 0 all ok, if equal to 0 than error

operation aborted.
BUGS

really it wasn’t tested now but I hope that it can work.

NOTES

SEE ALSO

GD_changeviewmode

graphics3d_E 6 / 42

1.6 graphics3d.library/GD_touchpalette()

NAME
GD_touchpalette -- create a shaded color palette

SYNOPSIS
GD_touchpalette(in, fr, lr, init_color, lastcolor)

A0 D0 D1 A1 A2
void GD_touchpalette(struct ambient3d *,LONG,LONG,struct rgbtype *,struct ←↩

rgbtype *);

FUNCTION
create a shaded color palette from two register color to use
corrected the flat shading view mode.

INPUTS
in = pointer to ambient3d structure of the 3d scene over

there you want work.
It must be greater than 0 otherwise the result is
undefined.

fr = first color register to set.
lr = last color register to set.
init_color = pointer to rgbtype structure with initial RGB value

of color.
lastcolor = pointer to rgbtype structure with final RGB value

of color.

RESULT

BUGS
anyone note, if you find any tell me.

NOTES
the color assegned to the object will use us reference to ’fr’ for
the flat shading and it will be the darker shade , ’lr’ the ligther
shade.
It must be always used because the solid shading use the central
shade us visualization color for polygons, using the object’s color
us reference to ’fr’.
Now it have two range of value for RGB init_color and RGB lastcolor:
1- RGB component in the range from 0 to 15 then it can use machines

with ECS chipset and S.O < 3.0.
2- RGB component in the range from 0 to 255 than it MUST use machines

with almost AGA chipset and S.O. >= 3.0.

SEE ALSO

1.7 graphics3d.library/GD_moveforward()

graphics3d_E 7 / 42

NAME
GD_moveforward -- move the observer

SYNOPSIS
GD_moveforward(in, dist)

A0 D0
void GD_moveforward(struct ambient3d *,LONG);

FUNCTION
move the observer of dist units forward to the point of view.

INPUTS
in = pointer to ambient3d structure of the 3d scene over there

you want work.
It must be greater than 0 otherwise the result is undefined.

dist = n# of units of observer displacement ,it can be negative
(move backward) but it must be in FIX POINT that is:
integer value * 256 (or FIXV) +
fractional value that will considered in 256 units.

RESULT

BUGS
anyone note, if you find any tell me.

NOTES
The fix point values are makes so :
integer value*multiplier + fractional value.
Where multiplier is the point position ane is always equal, in
this library is = 256 (use macro FIXV).
ex.: the floating point number 10.2 in fix point it will be :

integer_portion * multiplier +
multiplier / inverse_fractional_portion
that is with multiplier equal to 256 (macro FIXV):
(10 * 256) + (256 / (1/0.2)) = 2611

that is too :
float number * multiplier -> 10.2 * 256 = 2611

SEE ALSO

GD_viewangle
,
GD_positioncamera

1.8 graphics3d.library/GD_viewangle()

NAME
GD_viewangle -- gira l’osservatore

SYNOPSIS
GD_viewangle(in ,ax ,ay ,az)

A0 D0 D1 D2
void GD_viewangle(struct ambient3d *,LONG,LONG,LONG);

graphics3d_E 8 / 42

FUNCTION
permit of change the observer’s angle of viewing.

INPUTS
in = pointer to ambient3d structure of the 3d scene over there

you want work.
It must be greater than 0 otherwise the result is undefined.

ax = rotation value on X axis of observer.
it must be express in integer value (non fixpoint) and it
is used in sexagesimal(??) degrees (0-90-180-360..).

ay = rotation value on Y axis of observer.
it must be express in integer value (non fixpoint) and it
is used in sexagesimal(??) degrees (0-90-180-360..).

az = rotation value on Z axis of observer.
it must be express in integer value (non fixpoint) and it
is used in sexagesimal(??) degrees (0-90-180-360..).

RESULT

BUGS
anyone note, if you find any tell me.

NOTES

SEE ALSO

GD_moveforward
,
GD_positioncamera

1.9 graphics3d.library/GD_frustum()

NAME
GD_frustum -- set the planes that delimit the visible space.

SYNOPSIS
GD_frustum(in ,near ,far)

A0 D0 D1
void GD_frustum(struct ambient3d *,LONG,LONG);

FUNCTION
set the distance of planes that delimt the field of view ,
perpendicular at Z axis of observer.

INPUTS
in = pointer to ambient3d structure of the 3d scene over there

you want work.
It must be greater than 0 otherwise the result is undefined.

near = integer value (not fixpoint) distance of plane that signal
start of field of view of the defineted space.

far = integer value (not fixpoint) distance of plane that signal
end of field of view of the defineted space.

graphics3d_E 9 / 42

RESULT

BUGS
anyone note, if you find any tell me.

NOTES

SEE ALSO

GD_clipmode

1.10 graphics3d.library/GD_createlightsource()

NAME
GD_createlightsource -- place the light source in the space

SYNOPSIS
GD_createlightsource(in ,x ,y ,z)

A0 D0 D1 D2
void GD_createlightsource(struct ambient3d *,LONG,LONG,LONG);

FUNCTION
create and place a light source in the space.

INPUTS
in = pointer to ambient3d structure of the 3d scene over there

you want work.
It must be greater than 0 otherwise the result is undefined.

x = X coordinate of the light as regards to space origin.
Value in fix point (see notes of

GD_moveforward
).

y = Y coordinate of the light as regards to space origin.
Value in fix point (see notes of

GD_moveforward
).

z = Z coordinate of the light as regards to space origin.
Value in fix point (see notes of

GD_moveforward
).

RESULT

BUGS
I suspect that not place corrected the light, I must verify it
better.

NOTES
Really this function do not create the light but only place it,
because it can exist only one and is present from the use of

GD_display3d
otherwise the flatshading can’t run from the begging.

In the future pherhaps I can permit to use more than one and at

graphics3d_E 10 / 42

this monent this function will can really create the light souces.

SEE ALSO

GD_ambientlight

1.11 graphics3d.library/GD_ambientlight()

NAME
GD_ambientlight -- set the intensity of ambient light

SYNOPSIS
GD_ambientlight(in ,inte)

A0 D0
void GD_ambientlight(struct ambient3d *,LONG);

FUNCTION
set the intensity of ambient light but NOT the color.

INPUTS
in = pointer to ambient3d structure of the 3d scene over there

you want work.
It must be greater than 0 otherwise the result is undefined.

inte = intensity value in fixpoint (see notes of
GD_moveforward
).

RESULT

BUGS

NOTES
this function has effect only if you using the flat shading for now.

SEE ALSO

GD_createlightsource

1.12 graphics3d.library/GD_positioncamera()

NAME
GD_positioncamera -- observer posizioning

SYNOPSIS
GD_positioncamera(in ,x ,y ,z)

A0 D0 D1 D2
void GD_positioncamera(struct ambient3d *,LONG,LONG,LONG);

FUNCTION
place the observer as regards to space origin.

graphics3d_E 11 / 42

INPUTS
in = pointer to ambient3d structure of the 3d scene over there

you want work.
It must be greater than 0 otherwise the result is undefined.

x = X coordinate of the observer as regards to space origin.
Value in fix point (see notes of

GD_moveforward
).

y = Y coordinate of the observer as regards to space origin.
Value in fix point (see notes of

GD_moveforward
).

z = Z coordinate of the observer as regards to space origin.
Value in fix point (see notes of

GD_moveforward
).

RESULT

BUGS
anyone note, if you find any tell me.

NOTES

SEE ALSO

GD_moveforward
,
GD_viewangle

1.13 graphics3d.library/GD_aspectratio()

NAME
GD_aspectratio -- change the aspect ratio

SYNOPSIS
GD_aspectratio(in ,ratio)

A0 D0
void GD_aspectratio(struct ambient3d *,LONG);

FUNCTION
change the aspect ratio of visualized scene , by default is equal
to 1:1.

INPUTS
in = pointer to ambient3d structure of the 3d scene over there

you want work.
It must be greater than 0 otherwise the result is undefined.

ratio = new value for aspect ratio so expressed, ex.: if 1:2 than
is equal to 0.5.
Value in fix point (see notes of
GD_moveforward
).

graphics3d_E 12 / 42

RESULT

BUGS
anyone note, if you find any tell me.

NOTES

SEE ALSO

1.14 graphics3d.library/GD_clipmode()

NAME
GD_clipmode -- set a particular clip mode

SYNOPSIS
GD_clipmode(in ,mode)

A0 D0
void GD_clipmode(struct ambient3d *,LONG);

FUNCTION
set the clipping node of the objects in the space ,between the two
availables:
ZETA PLANE : to clip the object it use the boundig box only on Z

axis as regards to planes near and far.
FRUSTUM : to clip the object it use the bounding box on all 3

axis , the Z as regards to planes near and far , the
X and the Y as regards to max limits of visualization
box.

INPUTS
in = pointer to ambient3d structure of the 3d scene over there

you want work.
It must be greater than 0 otherwise the result is undefined.

mode = integer value new clip mode :
0 - ZETA PLANE (use macro ZPLANE)
1 - FRUSTUM (use macro FRUSTUM)

RESULT

BUGS
anyone note, if you find any tell me.

NOTES

SEE ALSO

GD_frustum

1.15 graphics3d.library/GD_pickobj()

graphics3d_E 13 / 42

NAME
GD_pickobj -- given a point identify polygon and object.

SYNOPSIS
idobj=GD_pickobj(in ,np ,x ,y)

A0 A1 D0 D1
LONG GD_pickobj(struct ambient3d *,LONG *,LONG,LONG);

FUNCTION
given a point on the visualization window (then 2D) identify inside
which poligon and which object behind those visibles in that moment ,
it are then if you not change the 2D point but change the viewing the
result can change.

INPUTS
in = pointer to ambient3d structure of the 3d scene over there

you want work.
It must be greater than 0 otherwise the result is undefined.

np = pointer to an integer where place n# polygon find.
It will are a integer value that start from 0 but it will
valid only if the function result great than 0.

x = integer value (not fix point) co-ordinate X as regards to the
visualization window of 3D scene.

y = integer value (not fix point) co-ordinate Y as regards to the
visualization window of 3D scene.

RESULT
integer value (not fix point) with univocal identifier of the object
where is place the point given.
If is equal to 0 the point is out of all object at that moment
visualzed.

BUGS
It can failed because not really found all point inside an object.

NOTES
The used algoritm is totally empiric for speed reason and than not
found all point inside a poligon, but certainly those find are
INSIDE the found poligon.
If anyone know algoritm more exact and can explain it to me will
are welcome.
For information this algoritm must can understand if a point is
inside or not to a triangle or quadrilateral(this is not exential)
but must do it faster as possible , because it will can tested
hundred of polygon.

SEE ALSO

GD_setobj
,
GD_getobj

graphics3d_E 14 / 42

1.16 graphics3d.library/GD_newobj()

NAME
GD_newobj -- create a new object

SYNOPSIS
esi=GD_newobj(in ,name ,pol ,vert)

A0 A2 D0 D1
LONG GD_newobj(struct ambient3d *,char *,LONG,LONG);

FUNCTION
create and initialize the memories areas to generate a new object
place it over the axis origin of the space and make it the actually
selected.

INPUTS
in = pointer to ambient3d structure of the 3d scene over there

you want work.
It must be greater than 0 otherwise the result is undefined.

name = pointer to a string (0x00 terminated) with name object.
pol = integer value with the total n# of poligons to assign at the

object.
vert = integer value with the total n# of vertices to assign at the

object.

RESULT
if esi equal to 0 oparation failed, otherwise all ok and the returned
value is the identifier (univocal) of created object.

BUGS
anyone note, if you find any tell me.

NOTES
remember that the so created object have the vertices and polygons
undefined than you must use the function

GD_addobjvertex
to

define the vertices ,
GD_addobjpoly
and

GD_cattpoly
to define the

polygons and than
GD_recalcobj
to initialize correctly all internal

value.

SEE ALSO

GD_deleteobject
,

GD_addobjvertex
,

GD_addobjpoly
,

GD_recalcobj

graphics3d_E 15 / 42

1.17 graphics3d.library/GD_deleteobject()

NAME
GD_deleteobject -- delete an object

SYNOPSIS
GD_deleteobject(in)

A0
void GD_deleteobject(struct ambient3d *);

FUNCTION
erase an object and all memory areas that regards it than make
the actually selected the previous, or if it is the first the next.

INPUTS
in = pointer to ambient3d structure of the 3d scene over there

you want work.
It must be greater than 0 otherwise the result is undefined.

RESULT

BUGS
anyone note, if you find any tell me.

NOTES
if there is no defined object than it end to do nothing.

SEE ALSO

GD_newobj

1.18 graphics3d.library/GD_addobjvertex()

NAME
GD_addobjvertex -- add a vertex to the current object

SYNOPSIS
esi=GD_addobjvertex(in ,num ,x ,y ,z)

A0 D0 D1 D2 D3
LONG GD_addobjvertex(struct ambient3d *,LONG,LONG,LONG,LONG);

FUNCTION
insert a vertex in the object actually selected to the position
pointing by num.

INPUTS
in = pointer to ambient3d structure of the 3d scene over there

you want work.
It must be greater than 0 otherwise the result is undefined.

graphics3d_E 16 / 42

num = integer number pointing what vertex you want insert.
(#1->num=0 , #2->num=1 ,).

x = integer value X co-ordinate of vertex to insert.
Value in fix point (see notes of

GD_moveforward
).

y = integer value Y co-ordinate of vertex to insert.
Value in fix point (see notes of

GD_moveforward
).

z = integer value Z co-ordinate of vertex to insert.
Value in fix point (see notes of

GD_moveforward
).

RESULT
if esi greather than 0 than all ok otherwise inserting aborted.

BUGS
anyone note, if you find any tell me.

NOTES
for now this function really only modified the vertex, because

GD_newobj
create all vertex yet but with unsense value.

In the future it is possible that it add really vertices.

SEE ALSO

GD_newobj
,
GD_deleteobject
,

GD_addobjpoly

1.19 graphics3d.library/GD_addobjpoly()

NAME
GD_addobjpoly -- a polygon adds to running object

SYNOPSIS
esi=GD_addobjpoly(in, num,p1,p2,p3,p4)

A0 D0 D1 D2 D3 D4
LONG GD_addobjpoly(struct ambient3d *, LONG, LONG, LONG, LONG, LONG);

FUNCTION
inserts a polygon in the currently selected object to the
position indicated from num. For polygon the directory of the three
or four apexes in hour sense agrees one or two that ne the chines
compose or apexes that compose the point or the line.

INPUTS
in = pointer to ambient3d structure of the 3d scene over there

graphics3d_E 17 / 42

you want work.
It must be greater than 0 otherwise the result is undefined.

num = entire number which polygon is becoming part.
(# 1->num=0, #2->num=1,ecc.).

p1 = number index #1 apex polygon on directory apexes object.
p2 = number index #2 apex polygon on directory apexes object.

In particular if this is equal to -1 then polygon with solo a
point that is designs a single point.

p3 = number index #3 apex polygon on directory apexes object.
In particular if this is equal to -1 then polygon with solo
two sides that is designs a segment.

p4 = number index #4 apex polygon on directory apexes object.
In particular if this is equal to -1 then polygon with solo
three sides.

RESULT
if 0 greater then all ok otherwise bankrupt insertion.

BUGS
anyone note, if you find any tell me.

NOTES
is worth the same note made for

GD_addobjvertex
, ciois in realta

does not join to a polygon but modification one already present.
At least for hour in future perhaps.

SEE ALSO

GD_newobj
,
GD_deleteobject
,
GD_addobjvertex
,

1.20 graphics3d.library/GD_cattpoly()

OBSOLETE -- use
GD_modpoly()
instead.

NAME
GD_cattpoly -- change polygon attributes

SYNOPSIS
esi=GD_cattpoly(in ,num ,color ,twoside)

A0 D0 D1 D2
LONG GD_cattpoly(struct ambient3d *,LONG,LONG,LONG);

FUNCTION
change the features of polygon pointing by num in the actually
selected object.

graphics3d_E 18 / 42

INPUTS
in = pointer to ambient3d structure of the 3d scene over there

you want work.
It must be greater than 0 otherwise the result is
undefined.

num = integer number pointing what polygon you want change.
(#1->num=0 , #2->num=1 ,).

color = integer number for base color of polygon.
For FLAT visualization will use the next color to shade to
tones more light.

twoside = integer number to show if poligon with two sides (1) or
with only one side (0).
If with two sides that is with back and front side than
it will are ever visible.
If with only one side than it will are visible only the
side that see to out of the object and to the observer.
This is a fast metod to reduce the n# of polygons in the
3d scene.

RESULT
if esi greather than 0 than all ok otherwise inserting aborted.

BUGS
anyone note, if you find any tell me.

NOTES

SEE ALSO

GD_addobjpoly

1.21 graphics3d.library/GD_recalcobj()

NAME
GD_recalcobj -- recalc the fixed parameter of the object

SYNOPSIS
GD_recalcobj(in)

A0
void GD_recalcobj(struct ambient3d *);

FUNCTION
recalc any parameter usually not variable of actually selected object
(as the bounding box) it must be run only if it is change the
co-ordinates of one or more vetices.

INPUTS
in = pointer to ambient3d structure of the 3d scene over there

you want work.
It must be greater than 0 otherwise the result is undefined.

RESULT

graphics3d_E 19 / 42

BUGS
anyone note, if you find any tell me.

NOTES
This functions it must be used ever after the and of definition of
a new object.
That is after use of

GD_newobj
,
GD_addobjvertex
,
GD_addobjpoly
.

SEE ALSO

GD_newobj
,

GD_addobjvertex
,

GD_addobjpoly

1.22 graphics3d.library/GD_setobj()

NAME
GD_setobj -- set as actually selacted an object

SYNOPSIS
esi=GD_setobj(in ,num)

A0 D0
LONG GD_setobj(struct ambient3d *,LONG);

FUNCTION
It set as actually selected object that pointing by identifier
in num.

INPUTS
in = pointer to ambient3d structure of the 3d scene over there

you want work.
It must be greater than 0 otherwise the result is undefined.

num = integer number with identifier if object that will be set.

RESULT
if esi greather than 0 than all ok otherwise inserting aborted.

BUGS
anyone note, if you find any tell me.

NOTES

SEE ALSO

GD_getobj

graphics3d_E 20 / 42

1.23 graphics3d.library/GD_getobj()

NAME
GD_getobj -- return identifier of an object

SYNOPSIS
id=GD_getobj(in)

A0
LONG GD_getobj(struct ambient3d *);

FUNCTION
return identifier of actually selected object.

INPUTS
in = pointer to ambient3d structure of the 3d scene over there

you want work.
It must be greater than 0 otherwise the result is undefined.

RESULT
if id greather than 0 than object’s identifier otherwise no one
actually selected.

BUGS
anyone note, if you find any tell me.

NOTES

SEE ALSO

GD_setobj

1.24 graphics3d.library/GD_paintframe()

NAME
GD_paintframe -- really paint all poligons

SYNOPSIS
rast=GD_paintframe(in)

A0
struct RastPort *GD_paintframe(struct ambient3d *);

FUNCTION
really paint all poligons really visible in the current view but not
visualized them.

INPUTS
in = pointer to ambient3d structure of the 3d scene over there

you want work.
It must be greater than 0 otherwise the result is undefined.

graphics3d_E 21 / 42

RESULT
pointer to RastPort used to paint the poligons (is not visible), it
can be used as pointer for other graphics function if this used the
layers (used for clipping) otherwise aspected a big crash.
Moreover this rasport have as origin, width and height the orginal
value setting with

GD_display3d
and not those eventually change

with
GD_clipbox
.

BUGS
anyone note, if you find any tell me.

NOTES
To erase the hidden faces, before to paint the polygons it
reorganize them on base of their average point Z distance from
the observer .
Unfortunately this algoritm can wrong on case of intersection.
But if you use the Z-buffering it run perfect and it a little
faster on big objects.

SEE ALSO

GD_newview
,

GD_switch_rp

1.25 graphics3d.library/GD_newview()

NAME
GD_newview -- recalc the actual view of the 3d scene

SYNOPSIS
GD_newview(in)

A0
void GD_newview(struct ambient3d *);

FUNCTION
recalc the list of polygons really visible in the actual view than
projet them on the plane projection.

INPUTS
in = pointer to ambient3d structure of the 3d scene over there

you want work.
It must be greater than 0 otherwise the result is undefined.

RESULT

BUGS
anyone note, if you find any tell me.

graphics3d_E 22 / 42

NOTES
this function must be used if you want see the effect of
trasformation on the object.
After that you have run this you must run

GD_paintframe()
to paint

the polygons and than
GD_switch_rp()
to visualized them.

SEE ALSO

GD_paintframe
,

GD_switch_rp

1.26 graphics3d.library/GD_switch_rp()

NAME
GD_switch_rp -- visualize the view painting with

GD_paintframe()
SYNOPSIS

GD_switch_rp(in)
A0

void GD_switch_rp(struct ambient3d *);

FUNCTION
visualize the view make with

GD_paintframe
and the addition make after.

INPUTS
in = pointer to ambient3d structure of the 3d scene over there

you want work.
It must be greater than 0 otherwise the result is undefined.

RESULT

BUGS
anyone note, if you find any tell me.

NOTES
In the _CPU library version I use the WritePixelArray() to do
the visualization of the chunk buffer in the window.
In the _BLT library version
to do the visualization I use the ClipBlit function to copy the
rastport used by

GD_paintframe
to the rastport of visualization

window, with this sistem I can eliminate all(almost) the flikering
that there is if I paint the polygons directly on the rastport of
window.
I have try to use BltBitMap instead of ClipBlit because it appear
to be faster , but on my machines sometimes make a beautiful crash.

graphics3d_E 23 / 42

Than for now I use ClipBlit , but I accept suggest to resolve the
problem.

SEE ALSO

GD_paintframe
,

GD_newview

1.27 graphics3d.library/GD_translateobject()

NAME
GD_translateobject -- relative move of an object’s origin

SYNOPSIS
GD_translateobject(in ,dx ,dy ,dz)

A0 D0 D1 D2
void GD_translateobject(struct ambient3d *,LONG,LONG,LONG);

FUNCTION
move the origin of actually selected object in relative mode as
regards to the origin of the object.

INPUTS
in = pointer to ambient3d structure of the 3d scene over there

you want work.
It must be greater than 0 otherwise the result is undefined.

dx = value of displacement object’s origin on axis X.
Value in fix point (see notes of

GD_moveforward
).

dy = value of displacement object’s origin on axis Y.
Value in fix point (see notes of

GD_moveforward
).

dz = value of displacement object’s origin on axis Z.
Value in fix point (see notes of

GD_moveforward
).

RESULT

BUGS
anyone note, if you find any tell me.

NOTES
this trasformation is always refered to the original position of
object as the

GD_scaleobject
.

For major explanation see NOTES of
GD_scaleobject
.

graphics3d_E 24 / 42

SEE ALSO

GD_positionobject

1.28 graphics3d.library/GD_positionobject()

NAME
GD_positionobject -- absolute move of an object’s origin

SYNOPSIS
GD_positionobject(in ,x ,y ,z)

A0 D0 D1 D2
void GD_positionobject(struct ambient3d *,LONG,LONG,LONG);

FUNCTION
move the origin of actually selected object in absolute mode as
regards to the origin of 3d scene.

INPUTS
in = pointer to ambient3d structure of the 3d scene over there

you want work.
It must be greater than 0 otherwise the result is undefined.

x = new value of object’s origin on axis X.
Value in fix point (see notes of

GD_moveforward
).

y = new value of object’s origin on axis Y.
Value in fix point (see notes of

GD_moveforward
).

z = new value of object’s origin on axis Z.
Value in fix point (see notes of

GD_moveforward
).

RESULT

BUGS
anyone note, if you find any tell me.

NOTES
this transformations IS ALWAYS APPLIED AFTER ALL OTHER in the scene
calculation.

SEE ALSO

GD_translateobject

1.29 graphics3d.library/GD_scaleobject()

graphics3d_E 25 / 42

NAME
GD_scaleobject -- rescale an object

SYNOPSIS
GD_scaleobject(in ,xscale_fact,yscale_fact,zscalefact)

A0 D0 D1 D2
void GD_scaleobject(struct ambient3d *,LONG,LONG,LONG);

FUNCTION
rescale the actually selected object as regards the axes of your
origin but not permanently (have effect only on actual frame).

INPUTS
in = pointer to ambient3d structure of the 3d scene over

there you want work.
It must be greater than 0 otherwise the result is undefined.

xscale_fact = value of scale factor of object’s axis X.
Value in fix point (see notes of
GD_moveforward
).

yscale_fact = value of scale factor of object’s axis Y.
Value in fix point (see notes of
GD_moveforward
).

zscale_fact = value of scale factor of object’s axis Z.
Value in fix point (see notes of
GD_moveforward
).

RESULT

BUGS
anyone note, if you find any tell me.

NOTES
any time you use this function the scaling will are applied on the
origin dimension of object, then if you want rescale more time the
object the scale_factor must be change consequently.
Ex: two rescale on axis X of two time is equal to only one of two

to time (not 4 as it can appear).
Note that it is really for combination of scale and rotation ,that is
for gradual varation it necessary reapply both trasformation with
their value to the object before run the

GD_newview
.

SEE ALSO

GD_rotateobject

1.30 graphics3d.library/GD_rotateobject()

NAME

graphics3d_E 26 / 42

GD_rotateobject -- rotate an object

SYNOPSIS
GD_rotateobject(in ,angle_x ,angle_y ,angle_z)

A0 D0 D1 D2
void GD_rotateobject(struct ambient3d *,LONG,LONG,LONG);

FUNCTION
rotate the actually selected object as regards the axes of your
origin but not permanently (have effect only on actual frame).

INPUTS
in = pointer to ambient3d structure of the 3d scene over there

you want work.
It must be greater than 0 otherwise the result is
undefined.

angle_x = integer (not fix point) value sexagesimal degrees that
tell the rotation angle on object’s X axis.

angle_y = integer (not fix point) value sexagesimal degrees that
tell the rotation angle on object’s Y axis.

angle_z = integer (not fix point) value sexagesimal degrees that
tell the rotation angle on object’s Z axis.

RESULT

BUGS
anyone note, if you find any tell me.

NOTES
this trasformation is always refered to the original position of
object as the

GD_scaleobject
.

For major explanation see NOTES of
GD_scaleobject
.

SEE ALSO

GD_scaleobject

1.31 graphics3d.library/GD_clipbox()

NAME
GD_clipbox -- change the size of visualzition box.

SYNOPSIS
esi=GD_clipbox(in ,minx ,miny ,dx ,dy)

A0 D0 D1 D2 D3
LONG GD_clipbox(struct ambient3d *,LONG,LONG,LONG,LONG)

FUNCTION
change the dimensions of the box that delimit the visualization
area of 3d scene.

graphics3d_E 27 / 42

INPUTS
in = pointer to ambient3d structure of the 3d scene over there

you want work.
It must be greater than 0 otherwise the result is undefined.

minx = X co-ordinate of box left upper edge, as regards to the
visualization window.

miny = Y co-ordinate of box left upper edge, as regards to the
visualization window.

dx = width value of box it must be a multiply of 16.
dy = height value of box.

RESULT
if esi greather than 0 than all ok and is the real value used for dx
otherwise change aborted.

BUGS
anyone note, if you find any tell me.

NOTES
warning, you can’t exceed the orginal dimension of visualization
box defined by

GD_display3d
otherwise it can crash the system.

This function don’t make any verify for this.

SEE ALSO

GD_display3d

1.32 graphics3d.library/GD_over()

NAME
GD_over -- change the draw mode in the hidden rastport

SYNOPSIS
GD_over(in, mod)

A0 D0
void GD_over(struct ambient3d *,LONG);

FUNCTION
change the draw mode in the rastport used by

GD_paintframe
but not

influence it.

INPUTS
in = pointer to ambient3d structure of the 3d scene over there

you want work.
It must be greater than 0 otherwise the result is undefined.

mod = new draw mode between this :
0 = JAM1 (use macro JAM1)
1 = JAM2 (use macro JAM2)
2 = COMPLEMENT (use macro COMPLEMENT)

graphics3d_E 28 / 42

4 = INVERSVID (use macro INVERSVID)

RESULT

BUGS
anyone note, if you find any tell me.

NOTES
It is usable only on AGA version and not on CPU version (in this case ←↩

change is made
on visualization window).

SEE ALSO

1.33 graphics3d.library/GD_cascene()

NAME
GD_cascene -- it varies some parameters of visualization of scene 3d

SYNOPSIS
GD_cascene(in, new)

A0 A1
LONG GD_cascene(struct ambient3d *, struct tag3d *);

FUNCTION
To vary some parameters of visualization of the defined
scene 3d with dislplay3d.

INPUTS
in = pointer to ambient3d structure of the 3d scene over there

you want work.
It must be greater than 0 otherwise the result is undefined.

new = pointer to Array of structures tag3d with new parameters,
works in the same way of the TagList implemented in the system
bookcases.
For the moment the possible values are:
CS_PROJECT - type of projection to use, usable values:

PROSP_P=prospective projection (the current one).
PARAL_P=parallel projection (experimental).

CS_SBUFF - still not implemented.
CS_GCOLOR - n # registry color background scene 3d (default

n#0).
CS_VDIST - new value (entire not fix) for distance between

observer and plan of projection.
CS_VIEWP - insert the actual coordinates of the view point

in the vertex structure pointing by filed .val
of ta3d element.

CS_NPX0 - val. entire (not fix) with new origin X box in
the window.

CS_NPY0 - val. entire (not fix) with new origin Y box in
the window.

CS_ZBUF - on/off (1/0) use of z-buffering.
CS_ZOOM - val. fixpoint fix the new zoom level of scene.

(max: 256 min: 1/256).

graphics3d_E 29 / 42

RESULT
0 equal if to no carried out variation, if > 0 then indicate number
of carried out variations.

BUGS
anyone note, if you find any tell me.

NOTES
Use the Array of structures tag3d exactly as the Array of said
TagItem structures also tag list implemented in the operating system
Amiga from the 2.0 in then. The last structure of the Array must be
empty and must have as first element constant END_T.
NOT TO DIRECTLY USE NEVER IN THE FIRST VALUE THE LABEL THE ALWAYS
USED NUMBERS BUT THAT INDICATE THEM.
For enable Z-Buffering you must have almost maxXbox*maxYbox*4 bytes
of memory free differently is it not enable.
Warning if you enable than disable it the memory used is not released
but only at scene close (

GD_close_display3d
).

SEE ALSO

1.34 graphics3d.library/GD_fix2int()

NAME
GD_fix2int -- a number fix point in an entire one converts.

SYNOPSIS
GD_fix2int(in, out)

A0 A1
LONG GD_fix2int(LONG *, LONG *)

FUNCTION
converts a number fix point in the format of the bookcase in an
entire one to 32bit approximating to the entire one piu’ close.

INPUTS
in = pointer to a 32 bit entire with value fix point converting
out = pointer to a 32 bit entire where to put turned out.

RESULT
0 equal if to all ok if various from 0 not modified error and out.

BUGS
anyone note, if you find any tell me.

NOTES

SEE ALSO

GD_fix2sfl
,

graphics3d_E 30 / 42

GD_fix2dfl

1.35 graphics3d.library/GD_fix2sfl()

NAME
GD_fix2sfl -- a number fix point in a single float converts.

SYNOPSIS
GD_fix2sfl(in, out)

A0 A1
LONG GD_fix2sfl(LONG *, float *);

FUNCTION
converts a number fix point in the format of the bookcase in
a float in single precision.

INPUTS
in = pointer to a 32 bit entire with value fix point converting
out = pointer to number single float where to put turned out.

RESULT
0 equal if to all ok if various from 0 not modified error and out.

BUGS
anyone note, if you find any tell me.

NOTES

SEE ALSO

GD_fix2int
,
GD_fix2dfl

1.36 graphics3d.library/GD_fix2dfl()

NAME
GD_fix2dfl -- a number fix point in a double float converts.

SYNOPSIS
GD_fix2dfl(in, out)

A0 A1
LONG GD_fix2dfl(LONG *, double *);

FUNCTION
converts a number fix point in the format of the bookcase in a
float in double precision.

INPUTS
in = pointer to a 32 bit entire with value fix point converting

graphics3d_E 31 / 42

out = pointer to number double float where to put turned out.

RESULT
0 equal if to all ok if various from 0 not modified error and out.

BUGS
anyone note, if you find any tell me.

NOTES

SEE ALSO

GD_fix2sfl
,
GD_fix2int

1.37 graphics3d.library/GD_int2fix()

NAME
GD_int2fix -- an entire one in a number in fix point converts.

SYNOPSIS
GD_int2fix(in, out)

A0 A1
LONG GD_int2fix(LONG *, LONG *);

FUNCTION
converts an entire one to 32bit in a number fix point in the format
demanded from the bookcase.

INPUTS
in = pointer to a 32 bit entire converting
out = pointer to a 32 bit entire where to put number in fix point

deliberate.

RESULT
0 equal if to all ok if various from 0 not modified error and out.

BUGS
anyone note, if you find any tell me.

NOTES

SEE ALSO

GD_sfl2fix
,
GD_dfl2fix

1.38 graphics3d.library/GD_sfl2fix()

graphics3d_E 32 / 42

NAME
GD_sfl2fix -- a single float converts in a number in fix point.

SYNOPSIS
GD_sfl2fix(in, out)

A0 A1
LONG GD_sfl2fix(float *, LONG *);

FUNCTION
converts a number float in single precision in a number fix
point in the format demanded from the bookcase.

INPUTS
in = pointer to number float to convert
out = pointer to entire to 32 bit where to put number in fix point

deliberate.

RESULT
0 equal if to all ok if various from 0 not modified error and out.

BUGS
anyone note, if you find any tell me.

NOTES

SEE ALSO

GD_int2fix
,
GD_dfl2fix

1.39 graphics3d.library/GD_dfl2fix()

NAME
GD_dfl2fix -- a double float converts in a number in fix point.

SYNOPSIS
GD_dfl2fix(in, out)

A0 A1
LONG GD_dfl2fix(double *, LONG *);

FUNCTION
converts a number float in double precision in a number fix
point in the format demanded from the bookcase.

INPUTS
in = pointer to number double float to convert
out = pointer to 32 bit inumber where to put number in fix point

deliberate.

RESULT
0 equal if to all ok if various from 0 not modified error and out.

graphics3d_E 33 / 42

BUGS
anyone note, if you find any tell me.

NOTES

SEE ALSO

GD_sfl2fix
,
GD_int2fix

1.40 graphics3d.library/GD_loadobject()

NAME
GD_loadobject -- load an object file with the custom .3dgfo format

SYNOPSIS
id=GD_loadobject(in,name,scale)

A0 A1 D0
LONG

GD_dfl2fix
(struct ambient3d *,char *,LONG)

FUNCTION
Load a file with the description of an object 3d , the format is
custom see notes for an little explanation.

INPUT
in = pointer to ambient3d structure of the 3d scene over there

you want work.
It must be greater than 0 otherwise the result is undefined.

name = pointer to a string with the name of object file (all path).
scale= value in FIXPOINT with the scale factor of object.

RESULT
If equal to 0 the function is failed no object is loaded.
If not equal to 0 than it is the identifier of the new object created
like in

GD_newobj
.

NOTES
This is an explanation of my custom 3dgfo format for 3d objects:
Header :
[3][D][G][F][X][V][x][.][x][x][00][object_name][00]
total vertex number (4 bytes :long int)
total polys number (4 bytes :long int)

Vertex coordinates :
X coordinates (8 bytes :double float Ieee format)
Y coordinates (8 bytes :double float Ieee format)
Z coordinates (8 bytes :double float Ieee format)
Note : One triplet for any vertex .

Poligon descriptor :
flag+colour of polygon (4 bytes)

graphics3d_E 34 / 42

vertex number of polygon (1 byte :permit value 1,2,3,4)
#1 vertex index (4 bytes :long int ,first =0 last=vertex_number-1)
#2 vertex index (4 bytes :long int ,first =0 last=vertex_number-1)
#3 vertex index (4 bytes :long int ,first =0 last=vertex_number-1)
#4 vertex index (4 bytes :long int ,first =0 last=vertex_number-1)
Note : vertex index #2,#3,#4 is present only if vertex number

of polygon is respectly 2,3 or 4.
Description of flag+colour :

flag (1 byte)
bit 0 = 0

colour[0] is Red component (1 byte: 0-255)
colour[1] is Green component (1 byte: 0-255)
colour[3] is Blue component (1 byte: 0-255)

bit 0 = 1
colour[0] ignored
colour[1] ignored
colour[3] register colour on screen palette

(1 byte: 0-255)
Note : now only bit0=1 is supported
bit 1 = 1 two face polygon
bit 1 = 0 one face polygon
bit 2-7 = reserved for future use

SEE ALSO

1.41 graphics3d.library/GD_genpalette()

NAME
GD_genpalette -- create the palette of virtual colore for 3D scene

SYNOPSIS
esi=GD_genpalette(in,new)

A0 A1
LONG GD_genpalette(struct ambient3d *,struct tag3d *)

FUNCTION
Make the virtual palette of colours that is the number assigned at any
colours is not equal at the register colour of real palette, than it
implement the trasparent colour.
The function

GD_touchpalette()
now recall this function.

INPUT
in = pointer to ambient3d structure of the 3d scene over there

you want work.
It must be greater than 0 otherwise the result is undefined.

new = pointer to Array of structures tag3d with new parameters,
works in the same way of the TagList implemented in the system
bookcases.
For the moment the possible values for .tipo are:
GP_RCOL - to reserve the n# of colours in the palette that it will

creat.
It will not change this colours from the register #0.

graphics3d_E 35 / 42

It is useful to not change the sistems colours.(Def. #4) ←↩
.

GP_NCOL - to define the base number of virtual color to use (Def ←↩
#1)

It can not be greater than the nuber colurs of the ←↩
screen

used ,the trasparent colour is not included.
GP_NLIV - to define the number of level of light intensity permit ←↩

for
any virtual colours, is not icluded the trasparent ←↩

colour
(Def. is auto adapted to the maximum permit by the used ←↩

screen).
The expression GP_NLIV*GP_NCOL+GP_RCOL it must by minor ←↩

or
equal than N#_MAX._SCREEN_COLOUR.
Differently this value it will change to satisfy this ←↩

condition.
It will useful to generate the scene colour ←↩

indipendently from
the colours of screen mode used.

GP_TRASP- set .val=1 to activate the trasparent colour set .val=0 ←↩
to

deactivate it (def. deactivate) this will are always the ←↩
last

of virtual colour ant it will not use to calcolate the ←↩
max

number of level of light intensity.
GP_COL - set the number of virtual color where will work the ←↩

nexts
operation (Def. #0) .It must by minor than the value set ←↩

by
GP_NCOLOR and start from 0.
This operation with the nexts can be replicate more time ←↩

so
you can set more virtual color in one time.

GP_HRGB - Set the greatest level of light intensity for the ←↩
virtual

color selected, .val must be point to a rgbtype ←↩
structure

with this value.(Def ->red=15 ->green=15 ->blue=15).
Warning if the renage of value is from 0 to 15 than the ←↩

library
will can use the S.O. from 2.0 instead if in the range ←↩

from
0 to 255 it must be used the S.O from 3.0.

GP_LRGB - Set the lowest level of light intensity for the virtual
color selected, .val must be point to a rgbtype ←↩

structure
with this value.(Def ->red=15 ->green=15 ->blue=15).
The warning is the same of GP_HRGB.

GP_INFO - return in the integer pointing by .val the number of ←↩
real

register in the palette of the rispective virtual color
Selected. This is also the value with the colour with ←↩

lowest
light intensity of virtual color selected.

graphics3d_E 36 / 42

GP_PALET- set the number of real register in the palette for the ←↩
virtual

color selected (the inverse of GP_INFO).
WARNING it will be the colorur with lowest intensity and ←↩

the
nexts GP_NLIV colours will be of cresent intensity.
It is useful to preset the palette before to use this ←↩

function.

RESULT
Number of operations run with success.

BUGS
Anyone note, if you find any tell me.

NOTES
With this function is possible not change the object colour if change the ←↩

number
of colours of screen mode selected.
Moreover I hope the with this it will be trasparent the eventual (in the ←↩

future
release of library) use of true colour screen (16,24 or 32 bits).

SEE ALSO

GD_touchpalette

1.42 graphics3d.library/GD_modpoly()

NAME
GD_modpoly -- change any caratteristic of poligons of actual object

SYNOPSIS
esi=GD_modpoly(in,new)

A0 A1
LONG GD_modpoly(struct ambient3d *,struct tag3d *)

FUNCTION
It permit the modify of any parameters of poligons of actual object, ←↩

between
this it permit to place of a texture map on the poligons.

INPUT
in = pointer to ambient3d structure of the 3d scene over there

you want work.
It must be greater than 0 otherwise the result is undefined.

new = pointer to Array of structures tag3d with new parameters,
works in the same way of the TagList implemented in the system
bookcases.
For the moment the possible values for .tipo are:
MP_POLY - select the poligon number where work the nexts operation ←↩

.
(Def #0)
This operation with the nexts can be replicate more time ←↩

so

graphics3d_E 37 / 42

you change more poligons in one time.
MP_ACTIV- to activate (1 on .val) or to deactivate (0 on .val) the

selected poligon.
MP_COLOR- new colour (in the range of virtual) for the selected ←↩

poligon.
MP_2SIDE- set at two(1 on .val) or one(0 on .val) side the ←↩

selected
poligon.

MP_TMAP - assign the selected texture map to the selecte poligon.
On val you must place the value returned from functions

GD_newtmap()
or

GD_newtmapf()
that have create this texture.

(Def. #0 no texture assigned).
MP_VTMAP- place the texture map assigned on the selected poligon, ←↩

is
ignored if not texture is assigned.
On val you must place the pointer to a vtmap structure ←↩

where
it must be set the vertex in pixel in the texture map
for any rispective vertex of poligon.
Than it possible place the texture to visualizze only a ←↩

portion
of this and liberally oriented.

MP_VTAUTO-to place automatically the texture on the selected ←↩
poligon.

The left up angle of texture it will coincide with the ←↩
first

vertex of poligon and all the texure will be ←↩
visualizated on

the poligon.
WARNING set always .val on 0 for compatibility with ←↩

future use.

RESULT
Number of operations run with success.

BUGS
Anyone note, if you find any tell me.

NOTES
Remember that if you want activate the texture mapping you must also ←↩

activate
the texture mapping on the object owner of poligon, use the

GD_modobj()
to do

this.

SEE ALSO

graphics3d_E 38 / 42

1.43 graphics3d.library/GD_newtmap()

NAME
GD_newtmap -- to create a texture map than usable be any objects.

SYNOPSIS
map=GD_newtmap(in,dx,dy,buf)

A0 D0 D1 A1
LONG GD_newtmap(struct ambient3d *,short int,short int,unsigned char *)

FUNCTION
Load and preapre a texture map to be subsequently place it on one or more
poligons, the image must be rappresented by a chunky buffer.

INPUT
in = pointer to ambient3d structure of the 3d scene over there

you want work.
It must be greater than 0 otherwise the result is undefined.

dx = value of width texture map in pixel.
dy = value of height texture map in pixel.
buf = pointing to an array of unsigned char with the image description

of the dx*dy texture map in chunky buffer format.
The colours used will be the virtual colours set with
GD_genpalette()
.
If any pixel will be set with trasparent colour the result image
will have an hole in this pixel.

RESULT
If equal to 0 operation aborted, if not equal to 0 the value it will must ←↩

be
use ony time you will want place this texture on a poligon.
Not exist limit on number of time a texture can be place on poligon and ←↩

this
will be memorized only ONE TIME.
There is not difference of speed if you use texture of 2x2 or 1000x1000 (←↩

it
will change only the used memory) texture.

BUGS
Anyone note, if you find any tell me.

NOTES

SEE ALSO

GD_newtmapf
,
GD_rmtmap
,
GD_modpoly

1.44 graphics3d.library/GD_rmtmap()

graphics3d_E 39 / 42

NAME
GD_rmtmap -- to delete a texture map previously created

SYNOPSIS
GD_rmtmap(in,map)

A0 A1
GD_rmtmap(struct ambient3d *,long int *)

FUNCTION
Erase a texture map created by

GD_newtmap()
or

GD_newtmapf()
.

INPUT
in = pointer to ambient3d structure of the 3d scene over there

you want work.
It must be greater than 0 otherwise the result is undefined.

map = value returned by
GD_newtmap()
or GD_netmapf(), if equal to

0 it will do nothing.

RESULT
No.

BUGS
Anyone note, if you find any tell me.

NOTES

SEE ALSO

GD_newtmap
,
GD_newtmapf

1.45 graphics3d.library/GD_newtmapf()

NAME
GD_newtmapf -- to create a texture map from a iff-ilbm file

SYNOPSIS
map=GD_newtmapf(in,name)

A0 A1
LONG GD_newtmapf(struct ambient3d *,unsigned char *)

FUNCTION
It do the same thinks of the GD_newtma() but it load from the selected ←↩

file
in IFF-ILBM format.

graphics3d_E 40 / 42

INPUT
in = pointer to ambient3d structure of the 3d scene over there

you want work.
It must be greater than 0 otherwise the result is undefined.

name = pointer to a string of char with the name and complete path
of the file in IFF-ILB format with the description of texture
map.
The dx and dy dimention its will extract from this file.
IT NOT READ CORRECTLY IMAGE HAM ,HALF-BRITE OR TRUE COLOR.
For the colours it equal to ’buf’ of
GD_newtmap()
.

RESULT
Same of

GD_newtmap()
.

BUGS
Anyone note, if you find any tell me.

NOTES
See

GD_newtmap()
.

SEE ALSO

GD_newtmap
,
GD_rmtmap
,
GD_modpoly

1.46 graphics3d.library/GD_colldetect()

NAME
GD_colldetect -- to detect collision behind object

SYNOPSIS
ris=GD_colldetect(in,n, buf)

A0 D0 A1
LONG GD_colldetect(struct ambient3d *,long int,long int *)

FUNCTION
To permit the detection of collision by actual object with other and
return with who.

INPUT
in = pointer to ambient3d structure of the 3d scene over there

you want work.
It must be greater than 0 otherwise the result is undefined.

n = maximum number of recordable collision.

graphics3d_E 41 / 42

buf = array of long with almost ’n’ element (WARNING it is not tested)
where the function will insert the identifier of the objects
thats collided with actual.
If the number of collision is greater than ’n’ all the array will
be full but the other will be lost.
If the number of collision is less than ’n’ anly the firts
elements af the array will be full.

RESULT
If 0 no collision detect else is the number of ALL collision really
detected.

BUGS
Anyone note, if you find any tell me.

NOTES
For the detecting of collision it is used only the bounding box of object
(update at any trasformation) than is no more accurate, for example
if you have an object with a hole this will be ignored .

SEE ALSO

1.47 graphics3d.library/GD_modobj()

NAME
GD_modobj -- to change any caratteristic of actual object

SYNOPSIS
esi=GD_modobj(in,new)

A0 A1
LONG GD_modobj(struct ambient3d *,struct tag3d *)

FUNCTION
To permit the modify of any parameter of actual object, at this
moment only the state and visualization mode.

INPUT
in = pointer to ambient3d structure of the 3d scene over there

you want work.
It must be greater than 0 otherwise the result is undefined.

new = pointer to Array of structures tag3d with new parameters,
works in the same way of the TagList implemented in the system
bookcases.
For the moment the possible values for .tipo are:
MO_STATE - activate (.val=1) or deactivate (.val=0) the actual ←↩

object
(Def. activate).
If you deatcivate this will be still existing but it ←↩

will be
ignored in the update and visualization of 3D scene ←↩

with big
objects this can speed up very much the operation.

MO_VMODE - change the visualization mode of object , the accepted ←↩
value

graphics3d_E 42 / 42

is:
WIREF -> wireframe
SOLID -> solid
SOLID+TMAP -> solid with texture map
FLAT -> flat shading
FLAT+TMAP -> texture map with flat shading
GORAUD -> goraud shading
GORAUD+TMAP -> texture map with goraud shading

RESULT
Number of operations run with success.

BUGS
Anyone note, if you find any tell me.

NOTES
For the MO_VMODE operation the mode ’GORAUD’ and combination with ’TMAP’ ←↩

is
supported only by the _CPU version, the _BLT version accept but ignore it.

SEE ALSO

	graphics3d_E
	graphics3d_E.doc
	graphics3d.library/GD_display3d()
	graphics3d.library/GD_close_display3d()
	graphics3d.library/GD_changeviewmode()
	graphics3d.library/GD_changeviewmodeobj()
	graphics3d.library/GD_touchpalette()
	graphics3d.library/GD_moveforward()
	graphics3d.library/GD_viewangle()
	graphics3d.library/GD_frustum()
	graphics3d.library/GD_createlightsource()
	graphics3d.library/GD_ambientlight()
	graphics3d.library/GD_positioncamera()
	graphics3d.library/GD_aspectratio()
	graphics3d.library/GD_clipmode()
	graphics3d.library/GD_pickobj()
	graphics3d.library/GD_newobj()
	graphics3d.library/GD_deleteobject()
	graphics3d.library/GD_addobjvertex()
	graphics3d.library/GD_addobjpoly()
	graphics3d.library/GD_cattpoly()
	graphics3d.library/GD_recalcobj()
	graphics3d.library/GD_setobj()
	graphics3d.library/GD_getobj()
	graphics3d.library/GD_paintframe()
	graphics3d.library/GD_newview()
	graphics3d.library/GD_switch_rp()
	graphics3d.library/GD_translateobject()
	graphics3d.library/GD_positionobject()
	graphics3d.library/GD_scaleobject()
	graphics3d.library/GD_rotateobject()
	graphics3d.library/GD_clipbox()
	graphics3d.library/GD_over()
	graphics3d.library/GD_cascene()
	graphics3d.library/GD_fix2int()
	graphics3d.library/GD_fix2sfl()
	graphics3d.library/GD_fix2dfl()
	graphics3d.library/GD_int2fix()
	graphics3d.library/GD_sfl2fix()
	graphics3d.library/GD_dfl2fix()
	graphics3d.library/GD_loadobject()
	graphics3d.library/GD_genpalette()
	graphics3d.library/GD_modpoly()
	graphics3d.library/GD_newtmap()
	graphics3d.library/GD_rmtmap()
	graphics3d.library/GD_newtmapf()
	graphics3d.library/GD_colldetect()
	graphics3d.library/GD_modobj()

